Es un procedimiento desarrollado por el matemático y astrónomo francés Pierre Simón Marques de Laplace (1749 - 1827) que permite cambiar funciones de la variable del tiempo t a una función de la variable compleja s.
Las características fundamentales de la transformada de Laplace son:
- Es un método operacional que puede usarse para resolver ecuaciones diferenciales lineales.
- Las funciones senoidales, senoidales amortiguadas y exponenciales se pueden convertir en funciones algebraicas lineales en la variable S.
- Sirve para reemplazar operaciones como derivación e integración, por operaciones algebraicas en el plano complejo de la variable S.
- Este método permite usar técnicas gráficas para predecir el funcionamiento de un sistema sin necesidad de resolver el sistema de ecuaciones diferenciales correspondiente
LA TRANSFORMADA DE LAPLACE (
)
El Método de la transformada de Laplace es un método operacional que puede usarse para resolver ecuaciones diferenciales lineales. Con el uso de la transformada de Laplace muchas funciones sinusoidales y exponenciales, se pueden convertir en funciones algebraicas de una variable compleja s, y reemplazar operaciones como la diferenciación y la integración, por operaciones algebraicas en el plano complejo.
Definimos:
f(t) = una función de tiempo t tal que f(t) = 0 para t > 0. Sea f(t) definida en ( 0,¥). Se define la transformada de Laplace de f(t), como la función [f(t)] = F(s), definida por la integral.
s = una variable compleja. El parámetro s se considerará real. Es esto suficiente para las aplicaciones con ecuaciones diferenciales lineales de coeficientes constantes y algunas de coeficientes variables. En otros casos es necesario trabajar en el campo complejo, considerando a s como complejo.
L = un símbolo operacional que indica que la cantidad a la que precede debe transformarse por la integral de Laplace

No hay comentarios:
Publicar un comentario